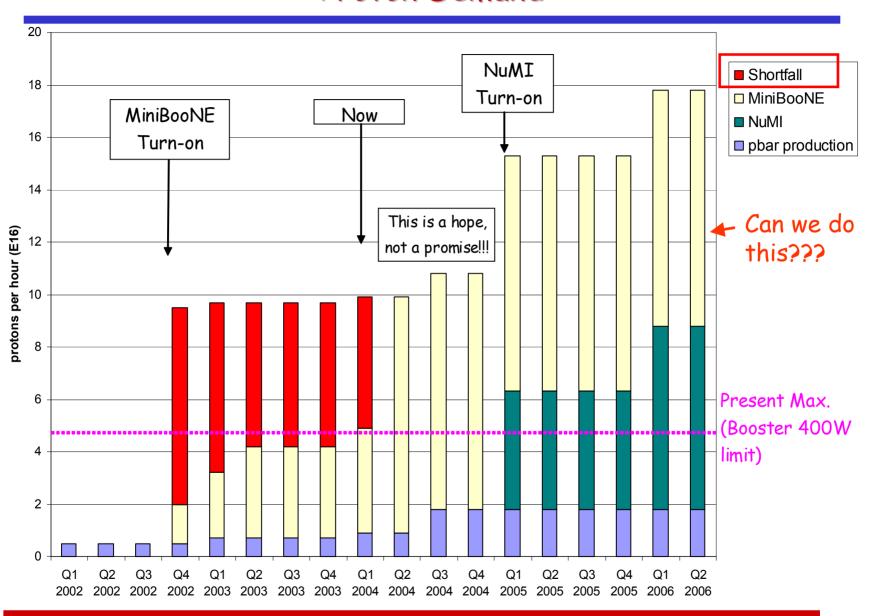
Proton Planning

Eric Prebys
FNAL Accelerator Division

Proton Team ("Finley Report")

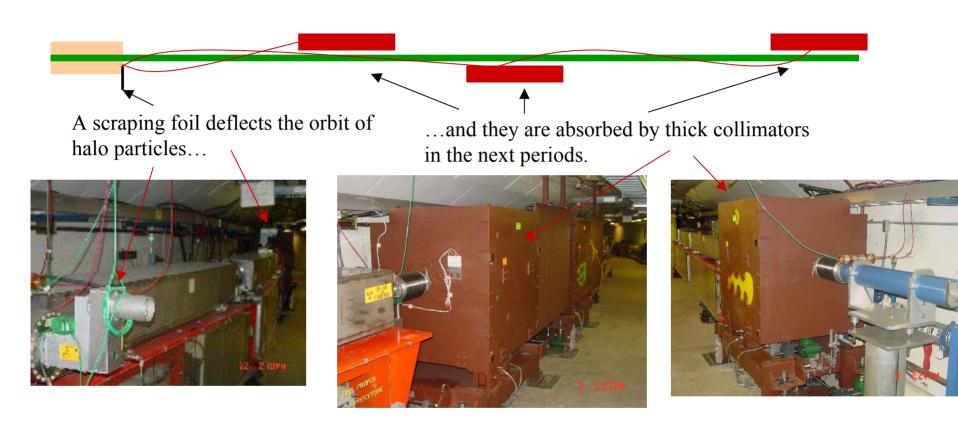

- Group formed in early 2003 to study proton demands and needs for the "near" future (through ~2012 or so), in the absence of a proton driver.
- Work culminated in a report to the director, available at www.fnal.gov/directorate/program_planning/studies/ProtonReport.pdf
- No big surprises [see P. Kasper "Getting Protons to NuMI (It's a worry)", FNAL Beams-doc-1036, 2001].
- This work will form the basis of "The Proton Plan".

What Limits Total Proton Intensity?

- Maximum number of Protons the Booster can stably accelerate: 5E12
- Maximum average Booster rep. Rate: currently 7.5 Hz, may have to go to 10 Hz for NuMI+ (full) MiniBooNE
- (NUMI only) Maximum number of booster batches the Main Injector can hold: currently 6 in principle, possibly go to 11 with fancy loading schemes in the future
- (NUMI only) Minimum Main Injector ramp cycle time (NUMI only): 1.4s+loading time (at least 1/15s*nbatches)
- Losses in the Booster:
 - > Above ground radiation
 - > Damage and/or activation of tunnel components

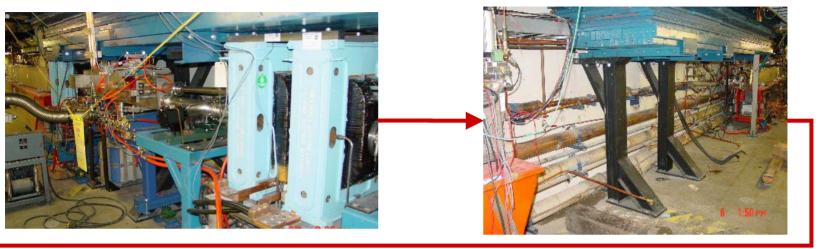
Our biggest worry at the moment!!!!

Proton Demand



Projects in 2003 (a short list)

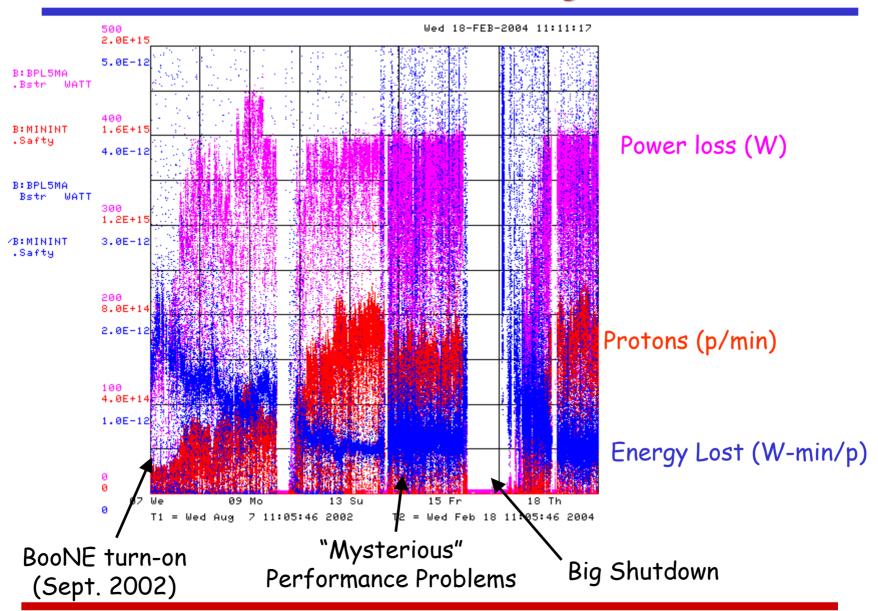
- 2003 Activities centered around preparation for the September shutdown:
 - > Linac water system upgrade
 - New Linac Lambertson
 - Better optics in 400 MeV line
 - > Booster two-stage collimation system
 - In the works a long time
 - Now in place.
 - > Major modifications at main extraction region
 - Address "dogleg problem" caused by extraction chicane system.
 - > New, large aperture magnets in extraction line:
 - Should reduce above-ground losses
 - Major vacuum system upgrade.
 - > Lots of smaller jobs.


New Collimator System

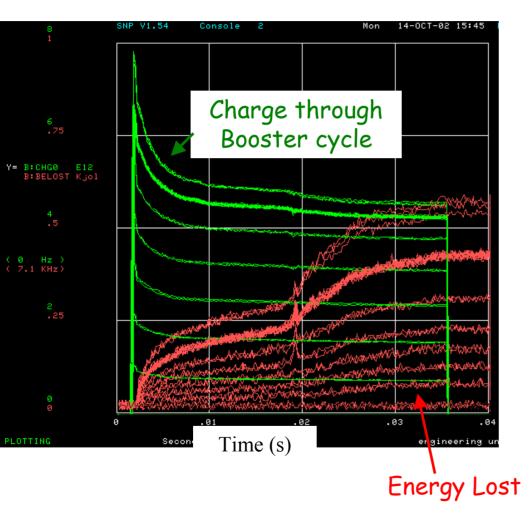
Basic Idea...

Should dramatically reduce uncontrolled losses

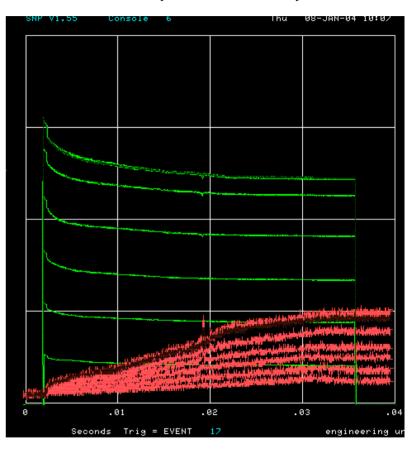
Long 3 Dogleg Work



New magnet to match extraction line


 Increase spacing between dogleg pairs from 18" to 40" to reduce lattice distortions at injection.

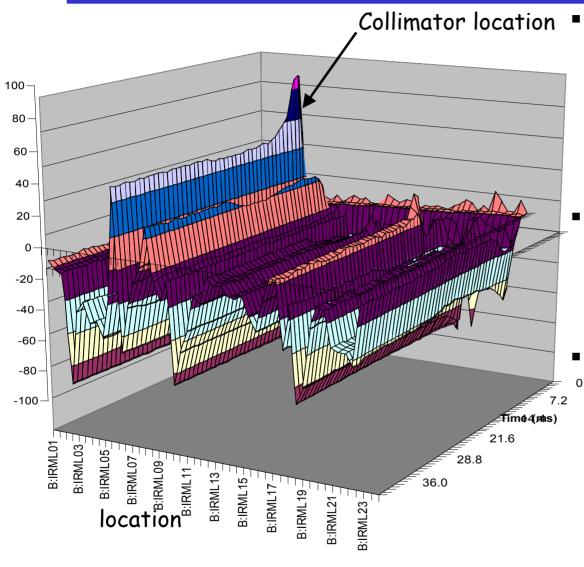
How are We Doing?



How far have we come?

Before MiniBooNE

Now (same scale!!)

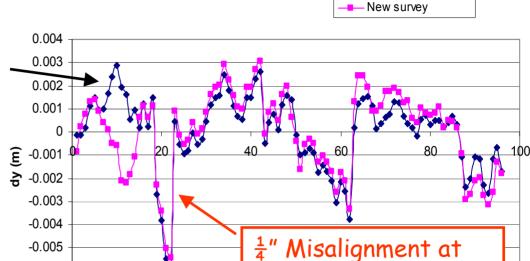


Note less pronounced injection and transition losses

Near Term Priorities (Booster)

- Optimizing Booster for improved lattice:
 - > Tuning and characterizing 400 MeV line (Linac to Booster).
 - Tuning Booster orbit to minimize losses.
- Commission Collimators:
 - > Estimate another month or so to bring into standard operation. (discussed shortly)
- Aperture Improvments:
 - Alignment (discussed shortly)
 - > Orbit control
 - Abandoning our original global plan in favor of local control at problem spots for the time being.
 - > Prototype RF Cavities
 - Two large aperture prototype cavities have been built, thanks to the help of MiniBooNE and NuMI universities.
 - We will install these as soon as they are ready to replace existing cavities which are highly activated.
- Multibatch timing: Beam cogging

Collimator Studies


- Shown is the effect of putting in one of the secondary collimators as a percentage change in losses as a function of time around the ring.
- Studies are continuing.
 - "Rapid response team" will be put on problem.
 - At present, primary collimators are not optimized to energy loss profile
 - Will replace in upcoming shutdown.

Alignment Problems

-0.006

-0.007

Effect of Booster tower shielding

dy

→ 1994 Survey+moves

index (1=24-3, 2=24-4, 3=1-1,etc)

Collimators!

- Working closely with AMG
- As opportunity allows
 - > Fix vertical orbit
 - Align RF cavities
- Over the next year
 - > Complete network
 - Integrate with MAD
 - > Make a horizontal plan.

Priorities over the Next Year

- Linac Characterization and Reliability
 - > Increase instrumentation of old linac to study instabilities.
 - > Develop set of performance parameters.
- Booster improvements.
 - > Prepare for modification of second extraction region
 - New septum
 - Modified dogleg magnets
 - On track for next year's shutdown.
 - > Injection bump (ORBUMP) improvements:
 - Injection Bump (ORBUMP) Power Supply
 - Existing supply a reliability worry.
 - Limited to 7.5 Hz
 - Building new supply, capable of 15 Hz.
 - Aiming for summer shutdown (aggressive, but doable)
 - New ORBUMP Magnets
 - Existing magnets limited by heating to 7.5 Hz
 - Working on a design for cooled versions.
 - These, with a new power supply, will make the Booster capable of sustained 15 Hz operation.
 - Aiming for summer shutdown (aggressive, but doable).

Planning for the future

- In response to the "Finley Report", the lab management has asked for a "Proton Plan" for the proton source over the next few years, analogous to the Run II plan, but much lower in scope.
- The plan is to do what we can reasonably do to maximize the throughput and reliability of the existing proton source (incl. MI), under the assumption that a Proton Driver will eventually be built.
- Beyond the things I have already mentions, the scope is largely determined by the budgetary guidance:

```
> FY04: $0-2M
```

> FY05: \$6M

> FY06: \$5M

> FY07: \$5M

> FY08: \$2.5M

Comment on the Budget

- This budget is more than enough to do the basic things that we must do to keep the proton source going, provided some of it appears this year!
- It precludes certain ideas that have been suggested:
 - ➤ New Linac front end, or any significant 200 MHz upgrade.
 - > Decreasing the Main Injector ramp time
- There are some "big" (>\$1M) projects that must be discussed.

Large Projects Under Consideration

- Booster RF system:
 - Commission a design for a new booster RF system
 - > Larger aperture, higher gradient cavities
 - Solid state distributed amplifiers
 - Goal to have design by January 2005.
 - > Two year timescale to build and install (perhaps solid-state DA's can come sooner).
 - > Cost ~all of it.
- Adding two additional cavities
 - Use university prototypes + spare parts
 - > Cost ~\$500K
- New corrector packages for the Booster
 - > Trim dipoles + quads
 - > ~\$3M
- 30 Hz harmonic to booster ramp.
 - Effectively increases RF power
 - > Cost of order \$1-2M
- New LEL quad power supplies.
 - > A significant reliability worry
 - > Cost of order \$1M.

Schedule for the Plan

- Will proceed with the vital projects for this year.
- Hope to have a skeleton of a plan by the end of this month.
- Will have a more detailed plan and major recommendations by this summer.

Expectation Management

What we really think we can achieve:

- Slipstacking to provide 1E13 protons per pulse for pbar production.
- > 5E20 protons to MiniBooNE by the time NuMI fully comes on in early 2005
- > 2-2.5E20 p/yr to NuMI in the first year of operation.
- > Increasing that over the next few years, to something over 3E20 p/yr.

What we might achieve:

- Continuing to operate the 8 GeV line at some significant level after NuMI comes on, ultimately delivering 1E21 protons to MiniBooNE and possibly supporting other experiments (e.g. FINESSE).
- Delivering as many as 4E20 p/yr to NuMI, at which point things will be limited by Main Injector aperture and cycle time (with the present source, anyway).

It would be unrealistic to believe:

- > We will ever send more than 4E20 p/yr to NuMI without significant (~\$100M) investment in the existing complex.
- > That would be direct competition for resources with the current Proton Driver proposal.